翻訳と辞書
Words near each other
・ Inertia (disambiguation)
・ Inertia (Marvel Comics)
・ Inertia (record company)
・ Inertia (short story)
・ Inertia (The Exies album)
・ Inertia coupling
・ Inertia Creeps
・ Inertia damper
・ Inertia negation
・ Inertia tensor of triangle
・ Inertia wheel pendulum
・ Inertial balance
・ Inertial confinement fusion
・ Inertial electrostatic confinement
・ Inertial footpod
Inertial frame of reference
・ Inertial fusion power plant
・ Inertial inflation
・ Inertial manifold
・ Inertial measurement unit
・ Inertial navigation system
・ Inertial number
・ Inertial platform
・ Inertial redshift
・ Inertial reference unit
・ Inertial response
・ Inertial supercharging effect
・ Inertial switch
・ Inertial Upper Stage
・ Inertial wave


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Inertial frame of reference : ウィキペディア英語版
Inertial frame of reference

In physics, an inertial frame of reference (also inertial reference frame or inertial frame, Galilean reference frame or inertial space) is a frame of reference that describes time and space homogeneously, isotropically, and in a time-independent manner.
All inertial frames are in a state of constant, rectilinear motion with respect to one another; an accelerometer moving with any of them would detect zero acceleration. Measurements in one inertial frame can be converted to measurements in another by a simple transformation (the Galilean transformation in Newtonian physics and the Lorentz transformation in special relativity). In general relativity, in any region small enough for the curvature of spacetime to be negligible, one can find a set of inertial frames that approximately describe that region.
Physical laws take the same form in all inertial frames.〔Assuming the coordinate systems have the same handedness.〕 By contrast, in a non-inertial reference frame the laws of physics vary depending on the acceleration of that frame with respect to an inertial frame, and the usual physical forces must be supplemented by fictitious forces. For example, a ball dropped towards the ground does not go exactly straight down because the Earth is rotating. Someone rotating with the Earth must account for the Coriolis effect—in this case thought of as a force—to predict the horizontal motion. Another example of such a fictitious force associated with rotating reference frames is the centrifugal effect, or centrifugal force.
==Introduction==
The motion of a body can only be described relative to something else - other bodies, observers, or a set of space-time coordinates. These are called frames of reference. If the coordinates are chosen badly, the laws of motion may be more complex than necessary. For example, suppose a free body (one having no external forces on it) is at rest at some instant. In many coordinate systems, it would begin to move at the next instant, even though there are no forces on it. However, a frame of reference can always be chosen in which it remains stationary. Similarly, if space is not described uniformly or time independently, a coordinate system could describe the simple flight of a free body in space as a complicated zig-zag in its coordinate system. Indeed, an intuitive summary of inertial frames can be given as: In an inertial reference frame, the laws of mechanics take their simplest form.〔
In an inertial frame, Newton's first law (the ''law of inertia'') is satisfied: Any free motion has a constant magnitude and direction.〔 Newton's second law for a particle takes the form:
:\mathbf = m \mathbf \ ,
with F the net force (a vector), ''m'' the mass of a particle and a the acceleration of the particle (also a vector) which would be measured by an observer at rest in the frame. The force F is the vector sum of all "real" forces on the particle, such as electromagnetic, gravitational, nuclear and so forth. In contrast, Newton's second law in a rotating frame of reference, rotating at angular rate ''Ω'' about an axis, takes the form:
:\mathbf' = m \mathbf \ ,
which looks the same as in an inertial frame, but now the force F′ is the resultant of not only F, but also additional terms (the paragraph following this equation presents the main points without detailed mathematics):
:\mathbf' = \mathbf - 2m \mathbf \times \mathbf_ - m \mathbf \times (\mathbf \times \mathbf_B ) - m \frac \times \mathbf_B \ ,
where the angular rotation of the frame is expressed by the vector Ω pointing in the direction of the axis of rotation, and with magnitude equal to the angular rate of rotation ''Ω'', symbol × denotes the vector cross product, vector x''B'' locates the body and vector v''B'' is the velocity of the body according to a rotating observer (different from the velocity seen by the inertial observer).
The extra terms in the force F′ are the "fictitious" forces for this frame. (The first extra term is the Coriolis force, the second the centrifugal force, and the third the Euler force.) These terms all have these properties: they vanish when ''Ω'' = 0; that is, they are zero for an inertial frame (which, of course, does not rotate); they take on a different magnitude and direction in every rotating frame, depending upon its particular value of Ω; they are ubiquitous in the rotating frame (affect every particle, regardless of circumstance); and they have no apparent source in identifiable physical sources, in particular, matter. Also, fictitious forces do not drop off with distance (unlike, for example, nuclear forces or electrical forces). For example, the centrifugal force that appears to emanate from the axis of rotation in a rotating frame increases with distance from the axis.
All observers agree on the real forces, F; only non-inertial observers need fictitious forces. The laws of physics in the inertial frame are simpler because unnecessary forces are not present.
In Newton's time the fixed stars were invoked as a reference frame, supposedly at rest relative to absolute space. In reference frames that were either at rest with respect to the fixed stars or in uniform translation relative to these stars, Newton's laws of motion were supposed to hold. In contrast, in frames accelerating with respect to the fixed stars, an important case being frames rotating relative to the fixed stars, the laws of motion did not hold in their simplest form, but had to be supplemented by the addition of fictitious forces, for example, the Coriolis force and the centrifugal force. Two interesting experiments were devised by Newton to demonstrate how these forces could be discovered, thereby revealing to an observer that they were not in an inertial frame: the example of the tension in the cord linking two spheres rotating about their center of gravity, and the example of the curvature of the surface of water in a rotating bucket. In both cases, application of Newton's second law would not work for the rotating observer without invoking centrifugal and Coriolis forces to account for their observations (tension in the case of the spheres; parabolic water surface in the case of the rotating bucket).
As we now know, the fixed stars are not fixed. Those that reside in the Milky Way turn with the galaxy, exhibiting proper motions. Those that are outside our galaxy (such as nebulae once mistaken to be stars) participate in their own motion as well, partly due to expansion of the universe, and partly due to peculiar velocities. (The Andromeda galaxy is on collision course with the Milky Way at a speed of 117 km/s.) The concept of inertial frames of reference is no longer tied to either the fixed stars or to absolute space. Rather, the identification of an inertial frame is based upon the simplicity of the laws of physics in the frame. In particular, the absence of fictitious forces is their identifying property.
In practice, although not a requirement, using a frame of reference based upon the fixed stars as though it were an inertial frame of reference introduces very little discrepancy. For example, the centrifugal acceleration of the Earth because of its rotation about the Sun is about thirty million times greater than that of the Sun about the galactic center.
To illustrate further, consider the question: "Does our Universe rotate?" To answer, we might attempt to explain the shape of the Milky Way galaxy using the laws of physics. (Other observations might be more definitive (that is, provide larger discrepancies or less measurement uncertainty), like the anisotropy of the microwave background radiation or Big Bang nucleosynthesis.) Just how flat the disc of the Milky Way is depends on its rate of rotation in an inertial frame of reference. If we attribute its apparent rate of rotation entirely to rotation in an inertial frame, a different "flatness" is predicted than if we suppose part of this rotation actually is due to rotation of the Universe and should not be included in the rotation of the galaxy itself. Based upon the laws of physics, a model is set up in which one parameter is the rate of rotation of the Universe. If the laws of physics agree more accurately with observations in a model with rotation than without it, we are inclined to select the best-fit value for rotation, subject to all other pertinent experimental observations. If no value of the rotation parameter is successful and theory is not within observational error, a modification of physical law is considered. (For example, dark matter is invoked to explain the galactic rotation curve.) So far, observations show any rotation of the Universe is very slow (no faster than once every 60·1012 years (10−13 rad/yr)〔(P Birch ) ''Is the Universe rotating?'' Nature 298, 451 - 454 (29 July 1982)〕), and debate persists over whether there is ''any'' rotation. However, if rotation were found, interpretation of observations in a frame tied to the Universe would have to be corrected for the fictitious forces inherent in such rotation. Evidently, such an approach adopts the view that "an inertial frame of reference is one where our laws of physics apply" (or need the least modification).
When quantum effects are important, there are additional conceptual complications that arise in quantum reference frames.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Inertial frame of reference」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.